Estimation of Boreal Forest Growing Stock Volume in Russia from Sentinel-2 MSI and Land Cover Classification

نویسندگان

چکیده

Growing stock volume (GSV) is a fundamental parameter of forests, closely related to the above-ground biomass and hence carbon storage. Estimation GSV at regional global scales depends on use satellite remote sensing data, although accuracies are generally lower over sparse boreal forest. This especially true forest in Russia, for which knowledge currently poor despite its importance. Here we develop new empirical method primary data source single summer Sentinel-2 MSI image, augmented by land-cover classification based same image trained using MODIS-derived data. In our work calibrated validated an extensive set field measurements from two contrasting regions Russian arctic. Results show that can be estimated with RMS uncertainty approximately 35–55%, comparable other spaceborne estimates low-GSV areas, 70% spatial correspondence between maps existing products derived MODIS Our approach requires somewhat laborious collection when used upscaling but could also downscale

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the role of russia in transmission of energy from central asia and caucuses to european union

پس ازفروپاشی شوروی،رشد منابع نفت و گاز، آسیای میانه و قفقاز را در یک بازی ژئوپلتیکی انرژی قرار داده است. با در نظر گرفتن این منابع هیدروکربنی، این منطقه به یک میدانجنگ و رقابت تجاری برای بازی های ژئوپلتیکی قدرت های بزرگ جهانی تبدیل شده است. روسیه منطقه را به عنوان حیات خلوت خود تلقی نموده و علاقمند به حفظ حضورش می باشد تا همانند گذشته گاز طبیعی را به وسیله خط لوله مرکزی دریافت و به عنوان یک واس...

15 صفحه اول

Observations of forest cover and forest growing stock volume in Siberia from PALSAR backscatter and coherence data

The properties of PALSAR L-band backscatter and interferometric coherence of Siberian boreal forest are the topic of this paper. The cross-polarized backscatter (HV) is better suited than co-polarized backscatter (HH) for identification of forest cover changes, e.g. clear cuts and fire scars. Coherence acquired during winter also shows a good contrast between forested and nonforested areas. Our...

متن کامل

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

Random Forest Algorithm for Land Cover Classification

Since the launch of the first land observation satellite Landsat-1 in 1972, many machine learning algorithms have been used to classify pixels in Thematic Mapper (TM) imagery. Classification methods range from parametric supervised classification algorithms such as maximum likelihood, unsupervised algorithms such as ISODAT and k-means clustering to machine learning algorithms such as artificial...

متن کامل

Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery

In previous classification studies, three non-parametric classifiers, Random Forest (RF), k-Nearest Neighbor (kNN), and Support Vector Machine (SVM), were reported as the foremost classifiers at producing high accuracies. However, only a few studies have compared the performances of these classifiers with different training sample sizes for the same remote sensing images, particularly the Senti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2021

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs13214483